
PDE-BASED GRADIENT LIMITING FOR

MESH SIZE FUNCTIONS

Per-Olof Persson

Dept. of Mathematics, Massachusetts Institute of Technology, persson@math.mit.edu

ABSTRACT

We propose a new method for limiting the gradients in a mesh size function by solving a non-linear partial differential
equation on the background mesh. Our gradient limiting Hamilton-Jacobi equation simplifies the generation of mesh
size functions significantly, by decoupling size constraints at specific locations from the mesh grading requirements.
We derive an analytical solution for convex domains which shows the results are optimal, and we describe how to
implement efficient solvers on various types of meshes. We demonstrate our size functions with a proposed new mesh
generation algorithm, using examples with curvature, feature size, and numerical adaptation.

Keywords: mesh generation, size function, background grids, Hamilton-Jacobi, gradation control

1. INTRODUCTION

In many mesh generation algorithms it is advanta-
geous if an appropriate mesh size function h(x) is
known prior to computing the mesh. This includes
the advancing front method [1], the paving method for
quadrilateral meshes [2], and smoothing-based mesh
generators such as the one we proposed in [3]. The
popular Delaunay refinement algorithm [4], [5] typi-
cally does not need an explicit size function since good
element sizing is implied from the quality bound, al-
though the mesh size function is a crucial underlying
aspect of the algorithm that is sometimes obscured in
the analysis.

Several techniques have been proposed for automatic
generation of mesh size functions, see [6], [7], [8]. A
common solution is to represent the size function in a
discretized form on a background grid [1], and the ac-
tual values of h(x) are obtained by interpolation. The
function should take into account geometrical features,
such as curvature and boundary proximity, as well as
user-defined size constraints and size estimates from
numerical adaptive solvers.

An important requirement on the size function is that
the ratio of neighboring element sizes in the generated

mesh is less than a given value G. This corresponds
to a limit on the gradient |∇h(x)| ≤ g with g = G− 1
(or possibly g = log G, depending on the interpreta-
tion). In some simple cases, this can be built into the
size function explicitly. For example, a “point-source”
size constraint h(y) = h0 in a convex domain can be
extended as h(x) = h0 + g|x − y|, and similarly for
other shapes such as edges. For more complex bound-
ary curves, local feature sizes, user constraints, etc,
such an explicit formulation is difficult to create and
expensive to evaluate. It is also harder to extend this
method to non-convex domains (such as the example
in Figure 3), or to non-constant g (Section 5.2).

One way to limit the gradients of a discretized size
function is to iterate over the edges of the background
mesh and update the size function locally for neigh-
boring nodes [9]. When the iterations converge, the
solution satisfies |∇h(x)| ≤ g only approximately, in a
way that depends on the mesh (see Section 4.3). An-
other method is to build a balanced octree, and let
the size function be related to the size of the octree
cells [10]. This data structure is used in the quadtree
meshing algorithm [11], and the balancing guarantees
a limited variation in element sizes, by a maximum fac-
tor of two between neighboring cells. However, when
used as a size function for other meshing algorithms it

provides an approximate discrete solution to the origi-
nal problem, and it is hard to generalize the method to
arbitrary gradients g or different background meshes.

We present a new technique to handle the gradient
limiting problem, by a continuous formulation of the
process as a Hamilton-Jacobi equation. Since the mesh
size function is defined as a continuous function of x,
it is natural to formulate the gradient limiting as a
PDE with solution h(x) independently of the actual
background mesh. We can see many benefits in doing
this:

• The analytical solution is exactly the optimal gra-
dient limited size function h(x) that we want,
as shown by Theorem 2.1. The only errors
come from the numerical discretization, which
can be controlled and reduced using known so-
lution techniques for hyperbolic PDEs.

• By relying on existing well-developed Hamilton-
Jacobi solvers we can generalize the algorithm in
a straightforward way to

– Cartesian grids, octree grids, or fully un-
structured meshes

– Higher order methods

– Space and solution dependent g

– Regions embedded in higher-dimensional
spaces, for example surface meshes in 3-D.

• We can compute the solution in O(n log n) time
using a modified fast marching method.

In Section 2 we present the gradient limiting equation
and some of its properties. Next we discuss various
implementations, in particular a fast algorithm with
nearly linear computational complexity. In Section 4
we show several examples of meshes generated using
our size functions. We show how to use gradient limit-
ing with a numerical adaptive solver in Section 5, and
also give some examples of non-standard size functions
involving a varying g.

2. THE GRADIENT LIMITING
EQUATION

We now consider how to limit the magnitude of the
gradients of a function h0(x), to obtain a new gradi-

ent limited function h(x) satisfying |∇h(x)| ≤ g ev-
erywhere. We require that h(x) ≤ h0(x), and at every
x we want h to be as large as possible. We claim that
h(x) is the steady-state solution to the following Gra-

dient Limiting Equation:

∂h

∂t
+ |∇h| = min(|∇h|, g), (1)

with initial condition

h(t = 0, x) = h0(x). (2)

When |∇h| ≤ g, (1) gives that ∂h/∂t = 0, and h will
not change with time. When |∇h| > g, the equation
will enforce |∇h| = g (locally), and the positive sign
multiplying |∇h| ensures that information propagates
in the direction of increasing values. At steady-state
we have that |∇h| = min(|∇h|, g), which is the same
as |∇h| ≤ g.

For the special case of a convex domain in R
n and con-

stant g, we can derive an analytical expression for the
solution to (1), showing that it is indeed the optimal
solution:

Theorem 2.1. Let Ω ⊂ R
n be a bounded convex

domain, and I = (0, T) a given time interval. The

steady-state solution h(x) = limT→∞ h(x, T) to

{

∂h
∂t

+ |∇h| = min(|∇h|, g) (x, t) ∈ Ω× I

h(x, t)|t=0
= h0(x) x ∈ Ω

(3)

is

h(x) = min
y

(h0(y) + g|x− y|). (4)

Proof. The Hopf-Lax theorem [12] states that the so-
lution to the Hamilton-Jacobi equation du

dt
+F (∇u) =

0 with initial condition u(x, 0) = u0(x) and convex
F (w) is given by

u(x, t) = min
y

[u0(y) + tF ∗ ((x− y)/t)] , (5)

where F ∗(u) = maxw(wu − F (w)) is the conjugate
function of F .

For our equation (3), rewrite as ∂h
∂t

+F (∇h) = 0, with
F (w) = |w| −min(|w|, g). The conjugate function is

F ∗(u) = max
w

(wu− F (w))

= max
w

(wu− |w|+ min(|w|, g))

=

{

g|u|, if |u| < 1,

+∞ if |u| ≥ 1.
(6)

Using (5), we get

h(x, t) = min
y

[h0(y) + tF ∗ ((x− y)/t)]

= min
y

|x−y|≤t

(h0(y) + g|x− y|). (7)

Let t→∞ to get the steady-state solution to (3):

h(x) = min
y

(h0(y) + g|x− y|). (8)

PSfrag replacements

Max Gradient g = 4 Max Gradient g = 2

Max Gradient g = 1 Max Gradient g = 0.5

Figure 1: Illustration of gradient limiting by ∂h/∂t +
|∇h| = min(|∇h|, g). The dashed lines are the initial
conditions h0, the solid lines are the gradient limited
steady-state solutions h for different parameter values
g.

Note that the solution (4) is composed of infinitely
many point-source solutions as described before. We
could in principle define an algorithm based on (4) for
computing h from a given h0 (both discretized). Such
an algorithm would be trivial to implement, but its
computational complexity would be proportional to
the square of the number of node points. Instead, we
solve (3) using efficient Hamilton-Jacobi solvers, see
Section 3.

The gradient limiting is illustrated by a 1-D example
in Figure 1, where (3) is solved using different val-
ues of g and a simple scalar function as initial con-
dition. Note how the large gradients are reduced ex-
actly the amount needed, without affecting regions far
away from them. This is very different from traditional
smoothing, which affects all data and gives excessive
perturbation of the original function h0(x). Our so-
lution is not necessarily smooth, but it is continuous
and |∇h| ≤ g everywhere.

3. IMPLEMENTATION

One advantage with the continuous formulation of the
problem is that a large variety of solvers can be used
almost as black-boxes. This includes solvers for struc-
tured and unstructured grids, higher-order methods,
and specialized fast solvers.

3.1 Cartesian Grids

On a Cartesian background grid, the equation (1) can
be solved with just a few lines of code using the fol-
lowing iteration:

hn+1

ijk = hn
ijk + ∆t

(

min(∇+

ijk, g)−∇+

ijk

)

(9)

where

∇+

ijk =
[

max(D−xhn
ijk, 0)2 + min(D+xhn

ijk, 0)2+

max(D−yhn
ijk, 0)2 + min(D+yhn

ijk, 0)2+

max(D−zhn
ijk, 0)2 + min(D+zhn

ijk, 0)2
]1/2

(10)

Here, D−x is the backward difference operator in the
x-direction, D+x the forward difference operator, etc.
The iterations are initialized by h0 = h0, and we iter-
ate until the updates ∆h(x) are smaller than a given
tolerance. The ∆t parameter is chosen to satisfy the
CFL-condition, we use ∆t = ∆x/2. The boundaries
of the grid do not need any special treatment since all
characteristics point outward.

The iteration (9) converges relatively fast, although
the number of iterations grows with the problem size
so the total computational complexity is superlinear.
Nevertheless, the simplicity makes this a good choice
in many situations. If a good initial guess is available,
this time-stepping technique might even be superior
to other methods. This is the case for problems with
moving boundaries, where the size function from the
last mesh is likely to be close to the new size function.
Another example is numerical adaptivity, when the
original size function often has relatively small gradi-
ents because of numerical properties of the underlying
PDE.

The scheme (9) is first-order accurate in space, and
higher accuracy can be achieved by using a second-
order solver. See [13] and [14] for details.

3.2 Fast Gradient Limiting

For faster solution of (1) we use a modified version
of the fast marching method (Sethian [15], see also
Tsitsiklis [16]). The main idea for solving our PDE (1)
is based on the fact that the characteristics point in the
direction of the gradient, and therefore smaller values
are never affected by larger values. This means we
can start by fixing the smallest value of the solution,
since it will never be modified. We then update the
neighbors of this node by a discretization of our PDE,
and repeat the procedure. To find the smallest value
efficiently we use a min-heap data structure.

During the update, we have to solve for a new hijk

in ∇+

ijk = g, with ∇+

ijk from (10). This expression is
simplified by the fact that hijk should be larger than

Algorithm 1 -
Fast Gradient Limiting

Description: Solve (1) on a Cartesian grid
Input: Initial discretized h0, grid spacing ∆x
Output: Discretized solution h

Set h = h0

Insert all hijk in a min-heap with back pointers
while heap not empty

Remove smallest element IJK from heap
for neighbors ijk of IJK still in heap:

compute upwind |∇hijk|
if |∇hijk| > g

Solve for hnew
ijk in ∇+

ijk = g from (10)
Set hijk ← min(hijk, hnew

ijk)
end if

end for

end while

Table 1: The fast gradient limiting algorithm for Carte-
sian grids. The computational complexity is O(n log n),
where n is the number of nodes in the background grid.

all previously fixed values of h, and we can solve a
quadratic equation for each octant and set hijk to the
minimum of these solutions.

Our fast algorithm is summarized as pseudo-code in
Table 1. Compared to the original fast marching
method, we begin by marking all nodes as TRIAL
points, and we do not have any FAR points. The ac-
tual update involves a nonlinear right-hand side, but
it always returns increasing values so the update pro-
cedure is valid. The heap is large since all elements
are inserted initially, but the access time is still only
O(log n) for each of the n nodes in the background
grid. In total, this gives a solver with computational
complexity O(n log n). For higher-order accuracy, the
technique described in [15] can be applied.

3.3 Unstructured Background Grids

An unstructured background grid gives a more efficient
representation of the size function and higher flexibil-
ity in terms of node placement. A common choice is
to use an initial Delaunay mesh, possibly with a few
additional refinements. Several methods have been
developed to solve Hamilton-Jacobi equations on un-
structured grids, and we have implemented the posi-
tive coefficient scheme by Barth and Sethian [17]. The
solver is slightly more complicated than the Cartesian
variants, but the numerical schemes can essentially be
used as black-boxes. A triangulated version of the fast
marching method was given in [18], and in [19] the al-
gorithm was generalized to arbitrary node locations.

One particular unstructured background grid is the
octree representation, and the Cartesian methods ex-
tend naturally to this case (both the iteration and the
fast solver). The values are interpolated on the bound-
aries between cells of different sizes. We mentioned in
the introduction that octrees are commonly used to
represent size functions, because of the possibility to
balance the tree and thereby get a limited variation
of cell sizes. Here, we propose to use the octree as
a convenient and efficient representation, but the ac-
tual values of the size function are computed using
our PDE. This gives higher flexibility, for example the
possibility to use different values of g.

4. RESULTS

In this section we present several examples of mesh
generation using size functions computed with the gra-
dient limiting equation. All triangular and tetrahedral
meshes are generated with the smoothing-based mesh
generator for distance functions that we presented in
[3].

4.1 2-D

We begin with a simple example of gradient limiting
in two dimensions on a triangular mesh. For the ge-
ometry in Figure 2, we set h0(x) proportional to the
radius of curvature on the boundaries, and to ∞ in
the interior. We solve our gradient limiting equation
using the positive coefficient scheme to get the mesh
size function in the left plot (throughout the paper,
light gray corresponds to low values and dark gray to
high values). A sample mesh using this result is shown
in the right plot.

This example shows that we can apply size constraints
in an arbitrary manner, for example only on some of
the boundary nodes. The PDE will propagate the val-
ues in an optimal way to the remaining nodes, and
possibly also change the given values if they violate
the grading condition. For this very simple geometry,
we can indeed write the size function explicitly as

h(x) = min
i

(hi + gφi(x)). (11)

Here, φi and hi are the distance functions and the
boundary mesh size for each of the three curved
boundaries. But consider, for example, a curved
boundary with a non-constant curvature. The analyt-
ical expression for the size function of this boundary
is non-trivial (it involves the curvature and distance
function of the curve). One solution would be to put
point-sources at each node of the background mesh,
but the complexity of evaluating (11) grows quickly
with the number of nodes. By solving our gradient
limiting equation, we arrive at the same solution in an
efficient and simple way.

Figure 2: Example of gradient limiting with an unstruc-
tured background grid. The size function is given at the
curved boundaries and computed by (1) at the remaining
nodes.

In Figure 3 we show a size function for a geometry
with a narrow slit, again generated using the unstruc-
tured gradient limiting solver. The initial size function
h0(x) is based on the local feature size and the curved
boundary at the top. Note that although the regions
on the two sides of the slit are close to each other, the
small mesh size at the curved boundary does not in-
fluence the other region. This solution is harder to ex-
press using source expressions such as (11), and more
expensive geometric search routines have to be used
instead.

A more complicated example is shown in Figure 4.
Here, we have computed the local feature size every-
where in the interior of the geometry. We compute
this as the sum of the distance from the boundary and
the distance from the medial axis, and we detect the
medial axis as the shocks in the distance function (we
will present more details about this in a forthcoming
paper). The result is stored on a Cartesian grid.

The gradient of the local feature size is greater than
g at some places, and we use the fast gradient limit-
ing solver in Algorithm 1 to get a well-behaved size
function. We also use curvature adaptation as before.
Note that this mesh size function would be very ex-
pensive to compute explicitly, since the feature size
is defined everywhere in the domain, not just on the
boundaries.

As a final example of 2-D mesh generation, we show
an object with smooth boundaries in Figure 5. We
use a Cartesian grid for the background grid and solve
the gradient limiting equation using the fast solver.

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 3: Another example of gradient limiting, showing
that non-convex regions are handled correctly. The small
sizes at the curved boundary do not affect the region
at the right, since there are no connections across the
narrow slit.

The feature size is again computed using the medial
axis and the distance function, and the curvature is
given by the Laplacian of the distance function with a
correction since the grid is not aligned with the bound-
aries.

Medial Axis and Feature Size

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 4: A mesh size function taking into account both
feature size, curvature, and gradient limiting. The fea-
ture size is computed as the sum of the distance function
and the distance to the medial axis.

Medial Axis and Feature Size

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 5: Generation of a mesh size function for a ge-
ometry with smooth boundaries.

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 6: Cross-sections of a 3-D mesh size function and
a sample tetrahedral mesh.

4.2 3-D

The PDE-based formulation generalizes to arbitrary
dimensions, and in Figure 6 we show a 3-D example.
Here, the feature size is computed explicitly from the
geometry description, the curvature adaptation is ap-
plied on the boundary nodes, and the size function is
computed by gradient limiting with g = 0.2. This re-
sults in a well-shaped tetrahedral mesh, in the bottom
plot (slivers have been removed by face swapping and
edge flipping).

The smooth surface of the geometry in Figure 7 is
represented by its discretized signed distance func-
tion. We apply gradient limiting with g = 0.25 on
a size function that is computed automatically, tak-

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 7: Cross-sections of a 3-D mesh size function and
a sample tetrahedral mesh. Note the small elements in
the narrow region, given by the local feature size, and
the smooth increase in element sizes.

ing into account curvature adaptation and feature size
adaptation (from the medial axis, as described before).
Again, the plots show cross-sections of the final mesh
size function and an example mesh.

4.3 Performance and Accuracy

To study the performance and the accuracy of our
algorithms, we consider a simple model problem in
Ω = (−50, 50) × (−50, 50) with two point-sources,
h(−10, 0) = 1 and h(10, 0) = 5, and g = 0.3. The
true solution is given by (4), and we solve the problem
on a Cartesian grid of varying resolution.

In Table 2 we compare the execution times for three
different solvers – edge-based iterations, Hamilton-
Jacobi iterations, and the Hamilton-Jacobi fast gra-
dient limiting solver. The edge-based iterative solver
loops until convergence over all neighboring nodes

Nodes Edge Iter. H-J Iter. H-J Fast

10,000 0.009s 0.060s 0.006s
40,000 0.068s 0.470s 0.030s

160,000 0.844s 3.625s 0.181s
640,000 6.609s 28.422s 1.453s

Table 2: Performance of the edge-based iterative solver,
the Hamilton-Jacobi iterative solver, and the Hamilton-
Jacobi fast gradient limiting solver.

i, j and updates the size function locally by hj ←
min(hj , hi + g|xj − xi|) (assuming hj > hi). The
iterative Hamilton-Jacobi solver is based on the iter-
ation (9) with a tolerance of about two digits. All
algorithms are implemented in C++ using the same
optimizations, and the tests were done on a PC with
an Athlon XP 2800+ processor.

The table shows that the iterative Hamilton-Jacobi
solver is about five times slower than the simple edge-
based iterations. This is because the update for-
mula for the edge-based iterations is simpler (all edge
lengths are the same) and since the Hamilton-Jacobi
solver requires more iterations for high accuracy (al-
though their asymptotic behavior should be the same).
The fast solver is better than the iterative solvers, and
the difference gets bigger with increasing problem size
(since it is asymptotically faster). Note that these
background meshes are relatively large and that all
solvers probably are sufficiently fast in many practical
situations.

We also mention that simple algorithms based on the
explicit expression (4) for convex domains or geomet-
ric searches for non-convex domains might be faster
for a small number of point-sources. However, these
methods are not practical for larger problems because
of the O(n2) complexity.

Next we compare the accuracy of the edge-based solver
and Hamilton-Jacobi discretizations of first and sec-
ond order accuracy. The true solution is given by (4),
and an algorithm based on this expression would of
course be exact to full precision. Figure 8 shows so-
lutions for a 100 × 100 grid, and it is clear that the
edge-based solver is highly inaccurate since it does not
take into account the continuous nature of the prob-
lem. It has a maximum error of 7.79, compared to
0.38 and 0.10 for the Hamilton-Jacobi solvers. This
is similar to the error in solving the Eikonal equa-
tion using Dijkstra’s shortest path algorithm instead
of the continuous fast marching method [15]. The er-
ror with the edge-based solver might be even larger
for unstructured background meshes which often have
low element qualities.

PSfrag replacements

True Solution Edge-Based

H-J, First Order H-J, Second Order

Figure 8: Comparison of the accuracy of the discrete
edge-based solver and the continuous Hamilton-Jacobi
solver on a Cartesian background mesh. The edge-based
solver does not capture the continuous nature of the
propagating fronts.

5. OTHER APPLICATIONS

In this section we show two special applications of the
gradient limiting equation – numerical adaptation and
non-constant g values.

5.1 Numerical Adaptation

Numerical adaptation is a technique for solving PDEs
using mesh size functions that are automatically gener-
ated to reduce the discretization error. From an error
estimator in each element, a new mesh size function
is computed. The mesh can then be updated, either
by local refinements or remeshing. The procedure is
repeated until the desired accuracy is achieved.

One problem when regenerating the mesh is that the
size function h(x) from the adaptive solver might be
highly irregular. The error estimation often varies be-
tween neighboring elements, giving high gradients also
in the size function. A simple solution is to smooth the
size function, e.g. using Laplacian smoothing. How-
ever, this introduces large deviations from the original
size function, even where the gradient is small. A bet-
ter method is to use gradient limiting and solve (1) on
the same unstructured mesh that the size function is
defined on.

An example is shown in Figure 9. We define a velocity

field

v = [1,−2πA cos 2πx] (12)

(with A = 0.3) and solve for u in the following advec-
tion problem:

v · ∇u(x, y) = 0, (x, y) ∈ (−1, 1)× (−1, 1) (13)

with boundary conditions

u(x,−1) = 0, (14)

u(x, 1) = 1, (15)

u(−1, y) =

{

1, if y ≥ 0

0, if y < 0.
(16)

The exact solution to this problem has a jump:

u(x, y) =

{

1, if y ≥ A sin 2πx

0, if y < A sin 2πx.
(17)

We discretize (13)-(16) using piecewise linear finite el-
ements with streamline-diffusion stabilization. To ob-
tain an accurate numerical solution, the discontinuity
along y = A sin 2πx has to be resolved. We do this
using numerical adaptation in the L2-norm, see [20].
The size function from the adaptive scheme is highly
irregular, and in particular it specifies large variations
in element sizes which would give low-quality triangles.
After gradient limiting the mesh size function is well-
behaved and a high-quality mesh can be generated (in
the bottom plot of Figure 9).

5.2 Space and Solution Dependent g

The solution of the gradient limiting equation remains
well-defined if we make g(x) a function of space. The
numerical schemes in Section 3 are still valid, and we
replace for example g in (9) with gijk. An application
of this is when some regions of the geometry require
higher element qualities, and therefore also a smaller
maximum gradient in the size function.

Figure 10 shows a simple example. The initial mesh
size h0 is based on curvatures and feature sizes. The
left and the right parts of the region have different
values of g, and the gradient limiting generates a new
size function h satisfying |∇h| ≤ g(x) everywhere.

Another possible extension is to let g be a function of
the solution h(x) (although it is then not clear if the
gradient limiting equation has one unique solution).
This can be used, for example, to get a fast increase
for small element sizes but smaller variations for large
elements. In a numerical solver this might be com-
pensated by the smaller truncation error for the small
elements. A simple example is shown in Figure 11,
where g(h) varies smoothly between 0.6 (for small el-
ements) and 0.2 (for large elements).

Adaptive Size Function h(x)

Gradient Limited h(x)

New Mesh and Solution u(x)

Figure 9: An example of numerical adaptation for solu-
tion of (13)-(16).

Maximum Gradient g(x)

PSfrag replacements
g = 0.4 g = 0.2

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 10: Gradient limiting with space-dependent g(x).

In the iterative solver, we replace g with g(hijk), and if
the iterations converge we have obtained a solution. In
the fast solver, we solve a (scalar) non-linear equation
∇+

ijk = g(hijk) at every update.

6. CONCLUSIONS

We have presented a new, continuous formulation of
the gradient limiting procedure, which is an important
part in the generation of good mesh size functions.
For convex domains, we showed that the continuous
solution is the optimal minimum over infinitely many
point-sources. The discretized equation can be solved
efficiently on all types of background meshes in any di-
mension. We showed several examples of high-quality
meshes generated with our mesh size functions, and we
gave an example of gradient limiting for an adaptive
finite element solver.

We give several suggestions for future development:

Maximum Gradient g(h)

0 0.1 0.2 0.3 0.4 0.5
0.2

0.3

0.4

0.5

0.6

PSfrag replacements

g
(h

)

h

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 11: Gradient limiting with solution-dependent
g(h). The distances between the level sets of h(x) are
smaller for small h, giving a faster increase in mesh size.

• Implementing a fast marching based solver for
triangular/tetrahedral background meshes. The
methods described in [18] and [19] should be ap-
plicable in a straightforward way.

• Extending the method to anisotropic mesh size
functions. There might be a PDE similar to the
gradient limiting equation (or a system of PDEs)
based on general metrics [9].

• Adaptive generation of background meshes. Zhu
et al [7] discussed an intuitive, iterative approach
for refinement of background meshes. With our
PDE-based formulation, we can achieve this in a
strict and systematic way by applying error esti-
mators for numerical adaptive solvers [20] on the
discretized solution h(x).

References

[1] Peraire J., Vahdati M., Morgan K., Zienkiewicz
O.C. “Adaptive Remeshing for Compressible
Flow Computations.” Journal of Computational

Physics, vol. 72, no. 2, 449–466, 1987

[2] Blacker T.D., Stephenson M.B. “Paving: A
New Approach to Automated Quadrilateral Mesh
Generation.” International Journal For Numer-

ical Methods in Engineering, vol. 32, 811–847,
1991

[3] Persson P.O., Strang G. “A Simple Mesh Gener-
ator in MATLAB.” SIAM Review, vol. 46, no. 2,
329–345, June 2004

[4] Ruppert J. “A Delaunay Refinement Algorithm
for Quality 2-Dimensional Mesh Generation.”
Journal of Algorithms, vol. 18, no. 3, 548–585,
1995

[5] Shewchuk J.R. “Delaunay Refinement Algo-
rithms for Triangular Mesh Generation.” Com-

putational Geometry: Theory and Applications,
vol. 22, no. 1-3, 21–74, May 2002

[6] Owen S., Saigal S. “Surface Mesh Sizing Con-
trol.” International Journal For Numerical Meth-

ods in Engineering, vol. 47, 497–511, 2000

[7] Zhu J., Blacker T., Smith R. “Background Over-
lay Grid Size Functions.” Proceedings of 11th In-

ternational Meshing Roundtable, pp. 65–74. San-
dia Nat. Lab., September 2002

[8] Zhu J. “A New Type of Size Function Respecting
Premeshed Entities.” Proceedings of 11th Inter-

national Meshing Roundtable, pp. 403–413. San-
dia Nat. Lab., September 2003

[9] Borouchaki H., Hecht F., Frey P.J. “Mesh Gra-
dation Control.” Proceedings of 6th International

Meshing Roundtable, pp. 131–141. Sandia Nat.
Lab., October 1997

[10] Frey P.J., Marechal L. “Fast Adaptive Quadtree
Mesh Generation.” Proceedings of 7th Interna-

tional Meshing Roundtable, pp. 211–224. Sandia
Nat. Lab., October 1998

[11] Yerry M.A., Shephard M.S. “A Modified
Quadtree Approach to Finite Element Mesh Gen-
eration.” IEEE Computer Graphics and Applica-

tions, vol. 3, no. 1, 39–46, 1983

[12] Hopf E. “Generalized Solutions of Non-Linear
Equations of First Order.” Journal of Mathemat-

ics and Mechanics, vol. 14, 951–973, 1965

[13] Osher S., Sethian J.A. “Fronts Propagating with
Curvature-Dependent Speed: Algorithms Based
on Hamilton-Jacobi Formulations.” Journal of

Computational Physics, vol. 79, no. 1, 12–49, 1988

[14] Harten A., Engquist B., Osher S., Chakravarthy
S.R. “Uniformly High Order Accurate Essentially
Non-Oscillatory Schemes.” Journal of Computa-

tional Physics, vol. 71, no. 2, 231–303, 1987

[15] Sethian J. “A Fast Marching Level Set Method
for Monotonically Advancing Fronts.” Proceed-

ings of the National Academy of Sciences, vol. 93
(4), pp. 1591–1595. 1996

[16] Tsitsiklis J.N. “Efficient Algorithms for Globally
Optimal Trajectories.” IEEE Transactions on

Automatic Control, vol. 40, 1528–1538, Septem-
ber 1995

[17] Barth T.J., Sethian J.A. “Numerical Schemes
for the Hamilton-Jacobi and Level Set Equations
on Triangulated Domains.” Journal of Computa-

tional Physics, vol. 145, 1–40, 1998

[18] Kimmel R., Sethian J. “Fast Marching Meth-
ods on Triangulated Domains.” Proceedings of

the National Academy of Sciences, vol. 95, pp.
8341–8435. 1998

[19] Covello P., Rodrigue G. “A Generalized Front
Marching Algorithm for the Solution of the
Eikonal Equation.” Journal of Computational

Physics, vol. 156, no. 2, 371–388, 2003

[20] Eriksson K., Estep D., Hansbo P., Johnson C.
Computational Differential Equations. Press Syn-
dicate of the University of Cambridge, 1996

